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Coherence resonance in excitable and oscillatory systems:
The essential role of slow and fast dynamics
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Stochastic noise of an appropriate amplitude can maximize the coherence of the dynamics of certain types
of excitable systems via a phenomenon known as coherence resd@)cen this paper we demonstrate,
using a simple excitable system, the mechanism underlying the generation of CR. Using analytical expressions
for the spectral density of the system’s dynamics, we show that CR relies on the coexistence of fast and slow
motions. We also show that the same mechanism of CR holds in the oscillatory regime, and we examine how
CR depends on both the excitability of the system and the nonuniformity of the motion.
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The apparent counterintuitive ability of noise to increasefects hold for the system in the oscillatory regime, and we
the coherence of a dynamical system has recently receivadvestigate how CR is dependent on both the ratio of the
considerable attention. By coherence, we mean the correlalow and fast motions and the distance to the bifurcation.
tion of the system time-course with itself. For instance, noise Here we consider a one-dimensional system with a piece-
can induce the synchronization of coupled oscillafdjsand  wise linear periodic potential. The system dynamics in the
regular synchronized oscillations in networks of coupled expresence of noise is described by
citable element§2,3]. Another popular noise-related topic is
stochastic resonand&R), which is a phenomenon wherein
the correlation between a weak input sigftstbically, peri-
odic) and the response of a nonlinear system is maximized
by the presence of a particular, nonzero level of npise). f(x)=(1—-a)0[(7/2)—x]+bO[x—(7/2)], (3
However, even in the absence of an input signal, noise can

maximize the coherence of certain types of nonlinear dywhere ® is the Heaviside functionx is the phase of the
namical systems. Indeed, noise can induce the appearancegfstem (G<x<2w), a>0, b>0, ¢ is Gaussian noise with
addlt'|onal peaks in the output power spectrum vyhen a SySzero mean and correlatidr(t;) £(t,)) = 8(t;—t,), andD is

tem is placed close to a bifurcati¢]. In the vicinity of &  the noise intensity. For the sake of simplicity variables and
saddle-node bifurcation, an optimal level of noise can maxiparameters are dimensionless. The parametats the sys-
mize the coherence of the dynamics of an excitable systergm's dynamical regime. i is less than 1in the absence of
[8]. A similar phenomenon, referred to asherence reso- pojse, the regime is oscillatory. If is greater than 1, the
nance(CR), has recently been demonstrated in several nonregime is excitable, i.e., wher is moved away from the
linear dynamical systemgd,10]. It was suggested in Ref. atiractor k= 0) such that it exceeds the threshold vatti,

[11] that the CR reported in Reff8] could be related to the 4, excursion is produced. We first consider an excitable sys-

coexistence of slow and fast motions in the system dynamggm, having two different time scales, where-4=0.05 and
ics. This idea was partially confirmed in R¢L0], where it -5 o5

x="f(x)+ VD), 2

was shown that the coefficient To quantify the coherence of the dynamics obtained with
Eq. (2), we define a coherence measgrbased on the spec-
R=Jvar(T)/(T), (D tral density, as in Refd8,9],

whereT is the duration of a system cycle, depends mainly on
the slow motion for low noise levels and the fast motion for
high noise levels.

In this paper we examine the effects of slow and fastwhereH is the peak value in the spectrum, is the peak
motions on CR in a one-dimensional excitable system. Théequency, and\w is the width of the peak. The width is
dynamics of this system is reduced to a series of pulses fatefined here ad w=w,—w,, Where o, is the frequency
which an analytical expression of the spectral density is obgreater thanw, for which the spectral density i§(w,)
tained. A measure of the coherence of the dynamics is de=H exp(—0.5). Figure 1 shows the coherengeobtained
rived and, in contrast to R€f10], we independently examine with Eq. (2) as a function of the noise amplitude It can be
the effects of slow and fast motions on the coherence. Thiseen thas is maximized forD~0.9. We define the apparent
leads to the first demonstration that CR is caused by theeriod T of the system as the first passage ti(R®T) over
distinct sensitivities of the durations of the slow and fast2# when the initial condition ix=0. Forx=0, the poten-
motions to the input noise. We also show that the same efial has a large steep barrier; thus, we can>sef) as a

B=Ho,/Aw, (4)
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FIG. 1. Solid circles: coherengg of the dynamics of Eq(2) as FIG. 2. Mean and square root of the variance of the durdfion

a function of the noise amplitud®. Each value of3 is obtained by  of slow motion and the duratiofi; of fast motion as a function of
averaging over 500 power spectra of simulations lasting 33 00ghe noise amplitud®.

time units with a time ste@t = 0.005. Open boxes: characteristic
correlation timer, of a series of pulses spaced by intervals corre-
sponding to realizations of. Dashed line: coefficient of variation
R, given by Eq.(2).

simulated Eq(8) and constructed series of pulses for differ-
ent values oD. When we applied the coherence measire
to these series of pulses, we found tigatvas a monotoni-
reflecting barrier. With this convention, the first and secondc@lly increasing function ob. To show that this result is not
moments of the random variableare given by[12] related to the definition o8, we also used the characteristic
correlation time 7.=[§“C(t)?dt (see Ref.[10]), where

_ 2 (2w dy (v C(t) is the normalized correlation coefficient for the time lag
(M=T(0=5 0 Wfo $2dz ® ¢ The boxes of Fig. 1 show that, is a monotonically in-
creasing function obD.
o 4 (2 dy (v We thus conclude that to account for CR, at least two
(T9)= BJO WJ’O $zT1(2)dz, (6)  characteristic time scales of the system must be taken into
account. This leads us to define two parts in the dynamics of
2 [x the excitable system, namely, slow motion and fast motion.
q&(x):exp( Bfo f(y)dy). (7) The definition of the durations of these parts in the presence

of noise is complicated by the fact that the motion oxer

From these expressions the coefficient of variadieq. 77/ IS bidirectional. Accordingly, we adopt the following
(1)], used in Ref[10] to quantify CR, can be obtained. Fig- definition for the duration of the fast motiom; is the period
ure 1 showsR as a function oD. Ris minimized for a value ©f time that the system spent in the high-rate redi6(x)
of D close to the one that maximizes the cohereficdf all ~ =Db] before crossing the value=27. This means that; is
the information required to account for CR was contained ithe FPT through 2 with initial conditionx= /2, provided
R, then a signal having only as source of variations should 7/2 is a reflecting barrier. The duration of the slow motion is
be able to reproduce CR. Such a simple sign@l is a thus defined a§ —T;. However, the duration of the slow
sequence of pulsey € 1) of fixed durationl spaced by in- motion can also be approximated by the FPJ through
tervals f/=0) having the probability distribution of. This  #/2, with the initial condition being the reflecting barrier
sequence can be simulated if one knows the probability dis=0. This can be done for two reasons. First, with a low
tribution of T. Let G(x,t) be the probability that the system noise level D <0.5), the probability density functions %,
Eq. (2) is still in the interval[0;27 ] at timet, if it was in - and T—T; differ little from one another and it is faster to
xe[0;2m] at timet=0. Using the backward Fokker-Planck compute the probability density function @ . Second, the
equation, one can shoWi2] that G obeys the following  mean and variance of botfi, and T—T; have the same
equation: dependence ob.

> Figure 2 shows the variations of the mean and variance of
G =T(X)HG(X,1)+(D2)#HG(x.1) ®) T ar?de, respectively, as a function @. As D increases,
the means of both FPTs decrease, Willy) decreasing more

with auxiliary conditions : . o
y sharply. It is further important to note that with increasing

G(x,00=1(xe[0;27]), 9) the fluctuations off 5 increase whereas those Df decrease.
These opposite dependenciesiead to the nonmonotonic
G(2m,1)=0, 4,G(0t)=0. (100  noise-related behavior of the coherenge To prove this

assertion, we construct three types of signals and measure
Equation(8) can be simulated and the probability distribu- their coherencg8 as a function of the noise level. The first
tion function of T is then obtained byP(t)=Prob(T<t) signaly(t) is a sequence of pulseg£ 1) spaced by inter-
=1-G(0t). Then, ifU is a random variable if0;1] with  vals (y=0) that are realizations df;. To preserve the fre-
uniform distribution,P~1(U) has the distribution of. We  quencies of the signal close to those of the system(Ex.
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FIG. 3. Spectral densities of different pulse serigs:only the
durationT; of the fast motion is variablép) only the durationT ¢ of
the slow motion is variable, and) bothT; and T, are variable. The
insets show the coherengeas a function of the noise amplituie

the pulse duration is set equal {&;). The spectral density
of this sequence of pulses, once the signal is centered,

given by[13]

_ 8sirf(w(Te)/2)

w/21

1-16¢(w)]?

02 ((Try+(Te) |1—explio(Ts)) Or(w)[?’

where o is the frequency and);(w) is the characteristic
function of T;. To determined;, we simulated Eq(8) with
the left boundaryx= 7r/2. Once the solution of Eq8) was
computed, the probability density functiowy of T was ob-
tained byw(t)=0,[1—G(m/2}t)]. The real and imaginary
parts of 8; were then computed using;. Figure 3a) pre-
sents the spectral densities obtained witk-0.6, 1.0, and
2.0. The height of the peak decreases withmuch faster

decreases as shown in the inset. Thus, a signal with Bnly
as a source of variation has a coherence that decreases with
the noise level.

The second type of signal we constructed is a sequence of
pulses where the pulse duration is set equaTtg and the
intervals between the pulses correspondr{o Figure 3b)
shows spectral densities obtained with this type of signal. It
can be seen that &increases, the coherengds increased
because the height of the peak increases and the width de-
creases.

The third type of signal we constructed is a sequence of
pulses where the pulse durations are realizations of the ran-
dom variableT; and the intervals between them correspond
to T. Figure 3c) shows spectral densities obtained with this
type of signal. In this case, the spectral density at frequency
w is given by[13]

S(w)= 4o ? De[[l—é's(w)][l— O5(w)]
TN 1w b(w) [
where 6, is the characteristic function df; and Re denotes
the real part. When the variations of both characteristic times
T¢ and T are introduced into the pulse sequence, the result-
ing coherences is a nonmonotonic function dd. With low
noise levels, the relative widtw,/Aw of the peak de-
creases, and the heigHtincreases. Thus, the dominant ef-
fect is the regularization of the duration of the slow motion.
With larger noise values, the coherence diminishes when the
increasing variability ofTy becomes dominant and produces
a decrease im,/Aw. (For very large noise amplitudes, this
can lead to a decrease Hh) The optimal noise amplitude
that maximizes the coherengeis in good agreement with
the value obtained for system E@) (see Fig. 1

Thus, our results show that CR is the consequence of the
different dependencies of the variances of the slow and fast
motions, respectively, on the input noise level. Importantly,
these results are also valid for larger values of paranseter
(e.g.,a=1.1). In such cases, the optimal valuelofs larger
and the maximum value g8 decreases witla. Recall that
the system Eq(2) is oscillatory ifa<1. To see if CR could
also occur in the oscillatory system, we computed the coher-
encep as a function of the noise amplitud® for different
values of the rate +a of the slow motion[the rate of the
fast motion remained at the value considered abdve (
=2.05)]. The results are presented in Fig. 4. With the oscil-
latory system, the coherence is infinite fbor=0 and de-
creases for low values @. If ais relatively close to 1, then
there exists a local maximum @. This maximum is due to
the fact that with low values oD, the variance ofT; first
increases and then decreases. If the decrease OF yau¢-
curs for small values ob, then CR is obtained. However,
when a is considerably smaller than 1, vag) starts de-
creasing for large values @ for which the variations of;
dominate the coherence of the dynamics and, as a result, the
regularization induced by the decrease of ¥ay(is not no-
ticeable.

Thus, provided that is not too far away from the sys-
tem’s bifurcation valuge.g., 2, CR is present in both the
excitable and oscillatory regimes. Howevaiis not the only
important parameter for obtaining CR. The other crucial con-

(12

than the peak frequency increases, so that the coheg@ncedition is that the ratid1—al/b must be much less than 1,
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4 noise level. This is because curd® is closer to the bifur-
() cation. Thus, the system does not have to be in the close
3l © ' vicinity of the bifurcation to exhibit CR, but the CR effect is
more pronounced the closer the system is to the bifurcation.
) In this paper we have shown that CR in certain types of
B 2¢ excitable and oscillatory systems is the consequence of the
different effects of noise on the systems’ slow and fast mo-
tions. The results we presented are not restricted to a model
with a piecewise linear potential. We obtained similar results
(@) with the active rotator moddl2] and an integrate-and-fire
0 : : : neuronal model. The CR mechanism demonstrated in this

0 0.5 ! 15 2 paper accounts for the CR reported in R&f.and is close to

D the one responsible for the CR presented in RE).

FIG. 4. Coherencgg as a function of the noise amplitud@efor The mechanism investigated here has possible implica-
various values of the parameta‘andb: (a) a= 105’b: 205’(b) tionS fOI’ nOisy dynamical Systems Of h|gher dimensions. In
a=0.85,b=2.05, (c) a=0.8,b=2.05, (d) a=0.75,b=2.05, and  particular, our work suggests that the presence of phases of
(e) a=0.75p=3.42. Note that the system is oscillatoryaic 1 and ~ slow and fast motions in the time course of a system’s vari-
excitable ifa>1. ables may be an indication that an appropriate nonzero level
of noise could lead to more regular dynamics. For instance,
we suggest that similar CR-type effects could account for
previously reported oscillations in networks of coupled ex-
citable element$3]. This issue will be explored in a future
study.

i.e., the motion must be nonuniform. This point is illustrated
by curves(d) and(e) in Fig. 4. Both curves correspond to the
same low value o& (a=0.75), but only for curvee) is the
ratio|1—al|/b low enough so that CR is obtained. Note also
that although the rati¢l—al/b for curve (b) is larger than The authors thank D. Mar and J. Hasty for useful com-
that for curve(e), the local maximum of the coherengeis  ments. This work was supported by the U.S. Department of
higher for curve(b) and it corresponds to a lower optimal Energy.
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