
PHYSICAL REVIEW E DECEMBER 1999VOLUME 60, NUMBER 6
Coherence resonance in excitable and oscillatory systems:
The essential role of slow and fast dynamics

Joël R. Pradines, Grigory V. Osipov, and James J. Collins
Center for BioDynamics and Department of Biomedical Engineering, Boston University,

44 Cummington Street, Boston, Massachusetts 02215
~Received 15 June 1999!

Stochastic noise of an appropriate amplitude can maximize the coherence of the dynamics of certain types
of excitable systems via a phenomenon known as coherence resonance~CR!. In this paper we demonstrate,
using a simple excitable system, the mechanism underlying the generation of CR. Using analytical expressions
for the spectral density of the system’s dynamics, we show that CR relies on the coexistence of fast and slow
motions. We also show that the same mechanism of CR holds in the oscillatory regime, and we examine how
CR depends on both the excitability of the system and the nonuniformity of the motion.
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PACS number~s!: 05.40.Ca, 05.45.2a
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The apparent counterintuitive ability of noise to increa
the coherence of a dynamical system has recently rece
considerable attention. By coherence, we mean the cor
tion of the system time-course with itself. For instance, no
can induce the synchronization of coupled oscillators@1# and
regular synchronized oscillations in networks of coupled
citable elements@2,3#. Another popular noise-related topic
stochastic resonance~SR!, which is a phenomenon wherei
the correlation between a weak input signal~typically, peri-
odic! and the response of a nonlinear system is maximi
by the presence of a particular, nonzero level of noise@4–6#.
However, even in the absence of an input signal, noise
maximize the coherence of certain types of nonlinear
namical systems. Indeed, noise can induce the appearan
additional peaks in the output power spectrum when a s
tem is placed close to a bifurcation@7#. In the vicinity of a
saddle-node bifurcation, an optimal level of noise can ma
mize the coherence of the dynamics of an excitable sys
@8#. A similar phenomenon, referred to ascoherence reso-
nance~CR!, has recently been demonstrated in several n
linear dynamical systems@9,10#. It was suggested in Ref
@11# that the CR reported in Ref.@8# could be related to the
coexistence of slow and fast motions in the system dyn
ics. This idea was partially confirmed in Ref.@10#, where it
was shown that the coefficient

R5Avar~T!/^T&, ~1!

whereT is the duration of a system cycle, depends mainly
the slow motion for low noise levels and the fast motion
high noise levels.

In this paper we examine the effects of slow and f
motions on CR in a one-dimensional excitable system. T
dynamics of this system is reduced to a series of pulses
which an analytical expression of the spectral density is
tained. A measure of the coherence of the dynamics is
rived and, in contrast to Ref.@10#, we independently examin
the effects of slow and fast motions on the coherence. T
leads to the first demonstration that CR is caused by
distinct sensitivities of the durations of the slow and fa
motions to the input noise. We also show that the same
PRE 601063-651X/99/60~6!/6407~4!/$15.00
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fects hold for the system in the oscillatory regime, and
investigate how CR is dependent on both the ratio of
slow and fast motions and the distance to the bifurcation

Here we consider a one-dimensional system with a pie
wise linear periodic potential. The system dynamics in
presence of noise is described by

ẋ5 f ~x!1ADj~ t !, ~2!

f ~x!5~12a!Q@~p/2!2x#1bQ@x2~p/2!#, ~3!

where Q is the Heaviside function,x is the phase of the
system (0<x<2p), a.0, b.0, j is Gaussian noise with
zero mean and correlation^j(t1)j(t2)&5d(t12t2), andD is
the noise intensity. For the sake of simplicity variables a
parameters are dimensionless. The parametera sets the sys-
tem’s dynamical regime. Ifa is less than 1~in the absence of
noise!, the regime is oscillatory. Ifa is greater than 1, the
regime is excitable, i.e., whenx is moved away from the
attractor (x50) such that it exceeds the threshold valuep/2,
an excursion is produced. We first consider an excitable s
tem having two different time scales, where 12a50.05 and
b52.05.

To quantify the coherence of the dynamics obtained w
Eq. ~2!, we define a coherence measureb based on the spec
tral density, as in Refs.@8,9#,

b5Hvp /Dv, ~4!

whereH is the peak value in the spectrum,vp is the peak
frequency, andDv is the width of the peak. The width is
defined here asDv5v r2vp , where v r is the frequency
greater thanvp for which the spectral density isS(v r)
5H exp(20.5). Figure 1 shows the coherenceb obtained
with Eq. ~2! as a function of the noise amplitudeD. It can be
seen thatb is maximized forD'0.9. We define the apparen
periodT of the system as the first passage time~FPT! over
2p when the initial condition isx50. Forx50, the poten-
tial has a large steep barrier; thus, we can setx50 as a
6407 © 1999 The American Physical Society
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6408 PRE 60PRADINES, OSIPOV, AND COLLINS
reflecting barrier. With this convention, the first and seco
moments of the random variableT are given by@12#

^T&5T1~0!5
2

DE
0

2p dy

f~y!
E

0

y

fzdz, ~5!

^T2&5
4

DE
0

2p dy

f~y!
E

0

y

fzT1~z!dz, ~6!

f~x!5expS 2

DE
0

x

f ~y!dyD . ~7!

From these expressions the coefficient of variationR @Eq.
~1!#, used in Ref.@10# to quantify CR, can be obtained. Fig
ure 1 showsR as a function ofD. R is minimized for a value
of D close to the one that maximizes the coherenceb. If all
the information required to account for CR was contained
R, then a signal having onlyT as source of variations shoul
be able to reproduce CR. Such a simple signaly(t) is a
sequence of pulses (y51) of fixed durationl spaced by in-
tervals (y50) having the probability distribution ofT. This
sequence can be simulated if one knows the probability
tribution of T. Let G(x,t) be the probability that the system
Eq. ~2! is still in the interval@0;2p# at time t, if it was in
xP@0;2p# at timet50. Using the backward Fokker-Planc
equation, one can show@12# that G obeys the following
equation:

] tG~x,t !5 f ~x!]xG~x,t !1~D/2!]x
2G~x,t ! ~8!

with auxiliary conditions

G~x,0!51~xP@0;2p@!, ~9!

G~2p,t !50, ]xG~0,t !50. ~10!

Equation~8! can be simulated and the probability distrib
tion function of T is then obtained byP(t)5Prob(T<t)
512G(0,t). Then, if U is a random variable in@0;1# with
uniform distribution,P21(U) has the distribution ofT. We

FIG. 1. Solid circles: coherenceb of the dynamics of Eq.~2! as
a function of the noise amplitudeD. Each value ofb is obtained by
averaging over 500 power spectra of simulations lasting 33
time units with a time stepdt 5 0.005. Open boxes: characterist
correlation timetc of a series of pulses spaced by intervals cor
sponding to realizations ofT. Dashed line: coefficient of variation
R, given by Eq.~1!.
d

n

s-

simulated Eq.~8! and constructed series of pulses for diffe
ent values ofD. When we applied the coherence measureb
to these series of pulses, we found thatb was a monotoni-
cally increasing function ofD. To show that this result is no
related to the definition ofb, we also used the characterist
correlation time tc5*0

1`C(t)2dt ~see Ref. @10#!, where
C(t) is the normalized correlation coefficient for the time la
t. The boxes of Fig. 1 show thattc is a monotonically in-
creasing function ofD.

We thus conclude that to account for CR, at least t
characteristic time scales of the system must be taken
account. This leads us to define two parts in the dynamic
the excitable system, namely, slow motion and fast moti
The definition of the durations of these parts in the prese
of noise is complicated by the fact that the motion overx
5p/2 is bidirectional. Accordingly, we adopt the followin
definition for the duration of the fast motion:Tf is the period
of time that the system spent in the high-rate region@ f (x)
5b# before crossing the valuex52p. This means thatTf is
the FPT through 2p with initial condition x5p/2, provided
p/2 is a reflecting barrier. The duration of the slow motion
thus defined asT2Tf . However, the duration of the slow
motion can also be approximated by the FPTTs through
p/2, with the initial condition being the reflecting barrierx
50. This can be done for two reasons. First, with a lo
noise level (D,0.5), the probability density functions ofTs

and T2Tf differ little from one another and it is faster t
compute the probability density function ofTs . Second, the
mean and variance of bothTs and T2Tf have the same
dependence onD.

Figure 2 shows the variations of the mean and varianc
Ts andTf , respectively, as a function ofD. As D increases,
the means of both FPTs decrease, with^Ts& decreasing more
sharply. It is further important to note that with increasingD,
the fluctuations ofTs increase whereas those ofTf decrease.
These opposite dependencies onD lead to the nonmonotonic
noise-related behavior of the coherenceb. To prove this
assertion, we construct three types of signals and mea
their coherenceb as a function of the noise level. The firs
signal y(t) is a sequence of pulses (y51) spaced by inter-
vals (y50) that are realizations ofTf . To preserve the fre-
quencies of the signal close to those of the system Eq.~2!,

0

-

FIG. 2. Mean and square root of the variance of the durationTs

of slow motion and the durationTf of fast motion as a function of
the noise amplitudeD.
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the pulse duration is set equal to^Ts&. The spectral density
of this sequence of pulses, once the signal is centere
given by @13#

S~v!5
8 sin2~v^Ts&/2!

v2~^Tf&1^Ts&!

12uu f~v!u2

u12exp~ iv^Ts&!u f~v!u2
,

~11!

where v is the frequency andu f(w) is the characteristic
function of Tf . To determineu f , we simulated Eq.~8! with
the left boundaryx5p/2. Once the solution of Eq.~8! was
computed, the probability density functionwf of Ts was ob-
tained bywf(t)5] t@12G(p/2,t)#. The real and imaginary
parts ofu f were then computed usingwf . Figure 3~a! pre-
sents the spectral densities obtained withD50.6, 1.0, and
2.0. The height of the peak decreases withD much faster
than the peak frequency increases, so that the coherenb

FIG. 3. Spectral densities of different pulse series:~a! only the
durationTf of the fast motion is variable,~b! only the durationTs of
the slow motion is variable, and~c! bothTf andTs are variable. The
insets show the coherenceb as a function of the noise amplitudeD.
is

decreases as shown in the inset. Thus, a signal with onlyTf
as a source of variation has a coherence that decreases
the noise level.

The second type of signal we constructed is a sequenc
pulses where the pulse duration is set equal to^Tf& and the
intervals between the pulses correspond toTs . Figure 3~b!
shows spectral densities obtained with this type of signa
can be seen that asD increases, the coherenceb is increased
because the height of the peak increases and the width
creases.

The third type of signal we constructed is a sequence
pulses where the pulse durations are realizations of the
dom variableTf and the intervals between them correspo
to Ts . Figure 3~c! shows spectral densities obtained with th
type of signal. In this case, the spectral density at freque
v is given by@13#

S~v!5
4v22

^Tf&1^Ts&
ReF @12us~v!#@12u f~v!#

12us~v!u f~v! G , ~12!

whereus is the characteristic function ofTs and Re denotes
the real part. When the variations of both characteristic tim
Tf andTs are introduced into the pulse sequence, the res
ing coherenceb is a nonmonotonic function ofD. With low
noise levels, the relative widthvp /Dv of the peak de-
creases, and the heightH increases. Thus, the dominant e
fect is the regularization of the duration of the slow motio
With larger noise values, the coherence diminishes when
increasing variability ofTf becomes dominant and produc
a decrease invp /Dv. ~For very large noise amplitudes, th
can lead to a decrease inH.! The optimal noise amplitude
that maximizes the coherenceb is in good agreement with
the value obtained for system Eq.~2! ~see Fig. 1!.

Thus, our results show that CR is the consequence of
different dependencies of the variances of the slow and
motions, respectively, on the input noise level. Importan
these results are also valid for larger values of parameta
~e.g.,a51.1). In such cases, the optimal value ofD is larger
and the maximum value ofb decreases witha. Recall that
the system Eq.~2! is oscillatory ifa<1. To see if CR could
also occur in the oscillatory system, we computed the coh
enceb as a function of the noise amplitudeD for different
values of the rate 12a of the slow motion@the rate of the
fast motion remained at the value considered aboveb
52.05)]. The results are presented in Fig. 4. With the os
latory system, the coherence is infinite forD50 and de-
creases for low values ofD. If a is relatively close to 1, then
there exists a local maximum ofb. This maximum is due to
the fact that with low values ofD, the variance ofTf first
increases and then decreases. If the decrease of var(Ts) oc-
curs for small values ofD, then CR is obtained. However
when a is considerably smaller than 1, var(Ts) starts de-
creasing for large values ofD for which the variations ofTf
dominate the coherence of the dynamics and, as a result
regularization induced by the decrease of var(Ts) is not no-
ticeable.

Thus, provided thata is not too far away from the sys
tem’s bifurcation value~e.g., 1!, CR is present in both the
excitable and oscillatory regimes. However,a is not the only
important parameter for obtaining CR. The other crucial co
dition is that the ratiou12au/b must be much less than 1
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6410 PRE 60PRADINES, OSIPOV, AND COLLINS
i.e., the motion must be nonuniform. This point is illustrat
by curves~d! and~e! in Fig. 4. Both curves correspond to th
same low value ofa (a50.75), but only for curve~e! is the
ratio u12au/b low enough so that CR is obtained. Note al
that although the ratiou12au/b for curve ~b! is larger than
that for curve~e!, the local maximum of the coherenceb is
higher for curve~b! and it corresponds to a lower optim

FIG. 4. Coherenceb as a function of the noise amplitudeD for
various values of the parametersa andb: ~a! a51.05,b52.05, ~b!
a50.85, b52.05, ~c! a50.8, b52.05, ~d! a50.75, b52.05, and
~e! a50.75,b53.42. Note that the system is oscillatory ifa<1 and
excitable ifa.1.
et

on

tur

.

noise level. This is because curve~b! is closer to the bifur-
cation. Thus, the system does not have to be in the c
vicinity of the bifurcation to exhibit CR, but the CR effect i
more pronounced the closer the system is to the bifurcat

In this paper we have shown that CR in certain types
excitable and oscillatory systems is the consequence of
different effects of noise on the systems’ slow and fast m
tions. The results we presented are not restricted to a m
with a piecewise linear potential. We obtained similar resu
with the active rotator model@2# and an integrate-and-fire
neuronal model. The CR mechanism demonstrated in
paper accounts for the CR reported in Ref.@8# and is close to
the one responsible for the CR presented in Ref.@10#.

The mechanism investigated here has possible impl
tions for noisy dynamical systems of higher dimensions.
particular, our work suggests that the presence of phase
slow and fast motions in the time course of a system’s v
ables may be an indication that an appropriate nonzero l
of noise could lead to more regular dynamics. For instan
we suggest that similar CR-type effects could account
previously reported oscillations in networks of coupled e
citable elements@3#. This issue will be explored in a future
study.
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